19,398 research outputs found

    The role of singletons in S7S^7 compactifications

    Get PDF
    We derive the isometry irrep content of squashed seven-sphere compactifications of eleven-dimensional supergravity, i.e., the left-squashed (LS7LS^7) with N=1{\mathcal N}=1 and right-squashed (RS7RS^7) with N=0{\mathcal N}=0 supersymmetry, in a manner completely independent of the round sphere. Then we compare this result with the spectrum obtained by Higgsing the round sphere spectrum. This way we discover features of the spectra which makes it possible to argue that the only way the round spectrum can be related by a Higgs mechanism to the one of LS7LS^7 is if the singletons are included in the round sphere spectrum. For this to work also in the RS7RS^7 case it seems that the gravitino of the LS7LS^7 spectrum must be replaced by a fermionic singleton present in the RS7RS^7 spectrum.Comment: 24 pages including appendix with 12 figure, v2 minor typos correcte

    X-ray fluorescence spectra of metals excited below threshold

    Full text link
    X-ray scattering spectra of Cu and Ni metals have been measured using monochromatic synchrotron radiation tuned from far above to more than 10 eV below threshold. Energy conservation in the scattering process is found to be sufficient to explain the modulation of the spectral shape, neglecting momentum conservation and channel interference. At excitation energies close to and above threshold, the emission spectra map the occupied local partial density of states. For the sub-threshold excitations, the high-energy flank of the inelastic scattering exhibits a Raman-type linear dispersion, and an asymmetric low energy tail develops. For excitation far below threshold the emission spectra are proportional to a convolution of the occupied and unoccuppied local partial densities of states.Comment: 10 pages, 3 figures, http://link.aps.org/doi/10.1103/PhysRevB.68.04511

    Initial experiments concerning quantum information processing in rare-earth-ion doped crystals

    Full text link
    In this paper initial experiments towards constructing simple quantum gates in a solid state material are presented. Instead of using specially tailored materials, the aim is to select a subset of randomly distributed ions in the material, which have the interaction necessary to control each other and therefore can be used to do quantum logic operations. The experimental results demonstrate that part of an inhomogeneously broadened absorption line can be selected as a qubit and that a subset of ions in the material can control the resonance frequency of other ions. This opens the way for the construction of quantum gates in rare-earth-ion doped crystals.Comment: 24 pages, including 12 figure

    Fast all-optical nuclear spin echo technique based on EIT

    Full text link
    We demonstrate an all-optical Raman spin echo technique, using Electromagnetically Induced Transparency (EIT) to create the different pulses of the spin echo sequence: initialization, pi-rotation, and readout. The first pulse of the sequence induces coherence directly from a mixed state, and the technique is used to measure the nuclear spin coherence of an inhomogeneously broadened ensemble of rare-earth ions (Pr3+^{3+}). In contrast to previous experiments it does not require any preparatory hole burning pulse sequences, which greatly shortens the total duration of the sequence. The effect of the different pulses is characterized by quantum state tomography and is compared with simulations. We demonstrate two applications of the technique by using the spin echo sequence to accurately compensate a magnetic field across our sample, and to measure the coherence time at high temperatures up to 11 K, where standard preparation techniques are difficult to implement. We explore the potential of the technique and possible applications.Comment: 8 pages, 6 figure

    Charge distribution and screening in layered graphene systems

    Full text link
    The charge distribution induced by external fields in finite stacks of graphene planes, or in semiinfinite graphite is considered. The interlayer electronic hybridization is described by a nearest neighbor hopping term, and the charge induced by the self consistent electrostatic potential is calculated within linear response (RPA). The screening properties are determined by contributions from inter- and intraband electronic transitions. In neutral systems, only interband transitions contribute to the charge polarizability, leading to insulating-like screening properties, and to oscillations in the induced charge, with a period equal to the interlayer spacing. In doped systems, we find a screening length equivalent to 2-3 graphene layers, superimposed to significant charge oscillations.Comment: 8 page

    A revision of the East African Nebrioporus abyssinicus group (Coleoptera, Dytiscidae)

    Get PDF
    The four species of the Nebrioporus abyssinicus (Sharp, 1882) group, confined to East Africa, are revised and a key is given for their identification. Lectotypes are designated for the following nominal species: Deronectes abyssinicus Sharp, 1882, Hydroporus tellinii Régimbart, 1904, Hydroporus atratus Régimbart, 1908, Hydroporus flavidus Régimbart, 1908, Deronectes cooperi Omer-Cooper, 1931, and Deronectes scotti Omer-Cooper, 1931. Hydroporus septemvittatus Régimbart, 1883, is listed as a species dubium. The third-instar larva of the group is described for the first time

    On Making Good Games - Using Player Virtue Ethics and Gameplay Design Patterns to Identify Generally Desirable Gameplay Features

    Get PDF
    This paper uses a framework of player virtues to perform a theoretical exploration of what is required to make a game good. The choice of player virtues is based upon the view that games can be seen as implements, and that these are good if they support an intended use, and the intended use of games is to support people to be good players. A collection of gameplay design patterns, identified through their relation to the virtues, is presented to provide specific starting points for considering design options for this type of good games. 24 patterns are identified supporting the virtues, including RISK/REWARD, DYNAMIC ALLIANCES, GAME MASTERS, and PLAYER DECIDED RESULTS, as are 7 countering three or more virtues, including ANALYSIS PARALYSIS, EARLY ELIMINATION, and GRINDING. The paper concludes by identifying limitations of the approach as well as by showing how it can be applied using other views of what are preferable features in games

    Electronic structure of GaAs1-xNx alloy by soft-X-ray absorption and emission: Origin of the reduced optical efficiency

    Full text link
    The local electronic structure of N atoms in a diluted GaAs1-xNx (x=3%) alloy, in view of applications in optoelectronics, is determined for the first time using soft-X-ray absorption (SXA) and emission (SXE). Deviations from crystalline GaN, in particular in the conduction band, are dramatic. Employing the orbital character and elemental specificity of the SXE/SXA spectroscopies, we identify a charge transfer from the N atoms at the valence band maximum, reducing the overlap with the wavefunction in conduction band minimum, as the main factor limiting the optical efficiency of GaAs1-xNx alloys. Moreover, a k-conserving process of resonant inelastic x-ray scattering involving the L1 derived valence and conduction states is discovered.Comment: 3 pages, physica status solidi (Rapid Research Notes), in pres

    Electronic properties of graphene multilayers

    Full text link
    We study the effects of disorder in the electronic properties of graphene multilayers, with special focus on the bilayer and the infinite stack. At low energies and long wavelengths, the electronic self-energies and density of states exhibit behavior with divergences near half-filling. As a consequence, the spectral functions and conductivities do not follow Landau's Fermi liquid theory. In particular, we show that the quasiparticle decay rate has a minimum as a function of energy, there is a universal minimum value for the in-plane conductivity of order e^2/h per plane and, unexpectedly, the c-axis conductivity is enhanced by disorder at low doping, leading to an enormous conductivity anisotropy at low temperatures.Comment: 4 pages, 4 figure. Reference to exciting new ARPES results on graphite added (we thank A. Lanzara for sharing the paper prior to its publication
    • …
    corecore